28 research outputs found

    The formal path integral and quantum mechanics

    Full text link
    Given an arbitrary Lagrangian function on \RR^d and a choice of classical path, one can try to define Feynman's path integral supported near the classical path as a formal power series parameterized by "Feynman diagrams," although these diagrams may diverge. We compute this expansion and show that it is (formally, if there are ultraviolet divergences) invariant under volume-preserving changes of coordinates. We prove that if the ultraviolet divergences cancel at each order, then our formal path integral satisfies a "Fubini theorem" expressing the standard composition law for the time evolution operator in quantum mechanics. Moreover, we show that when the Lagrangian is inhomogeneous-quadratic in velocity such that its homogeneous-quadratic part is given by a matrix with constant determinant, then the divergences cancel at each order. Thus, by "cutting and pasting" and choosing volume-compatible local coordinates, our construction defines a Feynman-diagrammatic "formal path integral" for the nonrelativistic quantum mechanics of a charged particle moving in a Riemannian manifold with an external electromagnetic field.Comment: 33 pages, many TikZ diagrams, submitted to _Journal of Mathematical Physics

    On the coordinate (in)dependence of the formal path integral

    Full text link
    When path integrals are discussed in quantum field theory, it is almost always assumed that the fields take values in a vector bundle. When the fields are instead valued in a possibly-curved fiber bundle, the independence of the formal path integral on the coordinates becomes much less obvious. In this short note, aimed primarily at mathematicians, we first briefly recall the notions of Lagrangian classical and quantum field theory and the standard coordinate-full definition of the "formal" or "Feynman-diagrammatic" path integral construction. We then outline a proof of the following claim: the formal path integral does not depend on the choice of coordinates, but only on a choice of fiberwise volume form. Our outline is an honest proof when the formal path integral is defined without ultraviolet divergences.Comment: 9 pages, uses Tik
    corecore